Network-Based Analysis to Identify Drivers of Metastatic Prostate Cancer Using GoNetic
Most known driver genes of metastatic prostate cancer are frequently mutated. To dig into the long tail of rarely mutated drivers, we performed network-based driver identification on the Hartwig Medical Foundation metastatic prostate cancer data set (HMF cohort). Hereto, we developed GoNetic, a meth...
Enregistré dans:
Auteurs principaux: | Louise de Schaetzen van Brienen, Giles Miclotte, Maarten Larmuseau, Jimmy Van den Eynden, Kathleen Marchal |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d39ae633b1bc40268809f76d24f6dd91 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Profile of Basal Cell Carcinoma Mutations and Copy Number Alterations - Focus on Gene-Associated Noncoding Variants
par: Paulina Maria Nawrocka, et autres
Publié: (2021) -
Cabazitaxel in the treatment of metastatic castration-resistant prostate cancer
par: Nikolai A. Ognerubov
Publié: (2021) -
A Network-Centric Framework for the Evaluation of Mutual Exclusivity Tests on Cancer Drivers
par: Rafsan Ahmed, et autres
Publié: (2021) -
Marginal improvement in survival among patients diagnosed with metastatic prostate cancer in the second‐line antiandrogen therapy era
par: Isaac E. Kim, et autres
Publié: (2021) -
An exploratory first‐in‐man study to investigate the pharmacokinetics and safety of liposomal dexamethasone at a 2‐ and 1‐week interval in patients with metastatic castration resistant prostate cancer
par: Josephina P. M. Vrouwe, et autres
Publié: (2021)