Effect of Processing Temperature and the Content of Carbon Nanotubes on the Properties of Nanocomposites Based on Polyphenylene Sulfide
The study aimed to investigate the effect of processing temperature and the content of multi-wall carbon nanotubes (MWCNTs) on the rheological, thermal, and electrical properties of polyphenylene sulfide (PPS)/MWCNT nanocomposites. It was observed that the increase in MWCNT content influenced the in...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d41c7640b01246428e53166121b32926 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d41c7640b01246428e53166121b32926 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d41c7640b01246428e53166121b329262021-11-11T18:48:14ZEffect of Processing Temperature and the Content of Carbon Nanotubes on the Properties of Nanocomposites Based on Polyphenylene Sulfide10.3390/polym132138162073-4360https://doaj.org/article/d41c7640b01246428e53166121b329262021-11-01T00:00:00Zhttps://www.mdpi.com/2073-4360/13/21/3816https://doaj.org/toc/2073-4360The study aimed to investigate the effect of processing temperature and the content of multi-wall carbon nanotubes (MWCNTs) on the rheological, thermal, and electrical properties of polyphenylene sulfide (PPS)/MWCNT nanocomposites. It was observed that the increase in MWCNT content influenced the increase of the complex viscosity, storage modulus, and loss modulus. The microscopic observations showed that with an increase in the amount of MWCNTs, the areal ratio of their agglomerates decreases. Thermogravimetric analysis showed no effect of processing temperature and MWCNT content on thermal stability; however, an increase in stability was observed as compared to neat PPS. The differential scanning calorimetry was used to assess the influence of MWCNT addition on the crystallization phenomenon of PPS. The calorimetry showed that with increasing MWCNT content, the degree of crystallinity and crystallization temperature rises. Thermal diffusivity tests proved that with an increase in the processing temperature and the content of MWCNTs, the diffusivity also increases and declines at higher testing temperatures. The resistivity measurements showed that the conductivity of the PPS/MWCNT nanocomposite increases with the increase in MWCNT content. The processing temperature did not affect resistivity.Kamil DydekPaulina Latko-DurałekAgata SulowskaMichał KubiśSzymon DemskiPaulina KozeraBogna SztorchAnna BoczkowskaMDPI AGarticlePPScarbon nanotubesthermal analysiselectrical propertiesrheological propertiesOrganic chemistryQD241-441ENPolymers, Vol 13, Iss 3816, p 3816 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
PPS carbon nanotubes thermal analysis electrical properties rheological properties Organic chemistry QD241-441 |
spellingShingle |
PPS carbon nanotubes thermal analysis electrical properties rheological properties Organic chemistry QD241-441 Kamil Dydek Paulina Latko-Durałek Agata Sulowska Michał Kubiś Szymon Demski Paulina Kozera Bogna Sztorch Anna Boczkowska Effect of Processing Temperature and the Content of Carbon Nanotubes on the Properties of Nanocomposites Based on Polyphenylene Sulfide |
description |
The study aimed to investigate the effect of processing temperature and the content of multi-wall carbon nanotubes (MWCNTs) on the rheological, thermal, and electrical properties of polyphenylene sulfide (PPS)/MWCNT nanocomposites. It was observed that the increase in MWCNT content influenced the increase of the complex viscosity, storage modulus, and loss modulus. The microscopic observations showed that with an increase in the amount of MWCNTs, the areal ratio of their agglomerates decreases. Thermogravimetric analysis showed no effect of processing temperature and MWCNT content on thermal stability; however, an increase in stability was observed as compared to neat PPS. The differential scanning calorimetry was used to assess the influence of MWCNT addition on the crystallization phenomenon of PPS. The calorimetry showed that with increasing MWCNT content, the degree of crystallinity and crystallization temperature rises. Thermal diffusivity tests proved that with an increase in the processing temperature and the content of MWCNTs, the diffusivity also increases and declines at higher testing temperatures. The resistivity measurements showed that the conductivity of the PPS/MWCNT nanocomposite increases with the increase in MWCNT content. The processing temperature did not affect resistivity. |
format |
article |
author |
Kamil Dydek Paulina Latko-Durałek Agata Sulowska Michał Kubiś Szymon Demski Paulina Kozera Bogna Sztorch Anna Boczkowska |
author_facet |
Kamil Dydek Paulina Latko-Durałek Agata Sulowska Michał Kubiś Szymon Demski Paulina Kozera Bogna Sztorch Anna Boczkowska |
author_sort |
Kamil Dydek |
title |
Effect of Processing Temperature and the Content of Carbon Nanotubes on the Properties of Nanocomposites Based on Polyphenylene Sulfide |
title_short |
Effect of Processing Temperature and the Content of Carbon Nanotubes on the Properties of Nanocomposites Based on Polyphenylene Sulfide |
title_full |
Effect of Processing Temperature and the Content of Carbon Nanotubes on the Properties of Nanocomposites Based on Polyphenylene Sulfide |
title_fullStr |
Effect of Processing Temperature and the Content of Carbon Nanotubes on the Properties of Nanocomposites Based on Polyphenylene Sulfide |
title_full_unstemmed |
Effect of Processing Temperature and the Content of Carbon Nanotubes on the Properties of Nanocomposites Based on Polyphenylene Sulfide |
title_sort |
effect of processing temperature and the content of carbon nanotubes on the properties of nanocomposites based on polyphenylene sulfide |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/d41c7640b01246428e53166121b32926 |
work_keys_str_mv |
AT kamildydek effectofprocessingtemperatureandthecontentofcarbonnanotubesonthepropertiesofnanocompositesbasedonpolyphenylenesulfide AT paulinalatkodurałek effectofprocessingtemperatureandthecontentofcarbonnanotubesonthepropertiesofnanocompositesbasedonpolyphenylenesulfide AT agatasulowska effectofprocessingtemperatureandthecontentofcarbonnanotubesonthepropertiesofnanocompositesbasedonpolyphenylenesulfide AT michałkubis effectofprocessingtemperatureandthecontentofcarbonnanotubesonthepropertiesofnanocompositesbasedonpolyphenylenesulfide AT szymondemski effectofprocessingtemperatureandthecontentofcarbonnanotubesonthepropertiesofnanocompositesbasedonpolyphenylenesulfide AT paulinakozera effectofprocessingtemperatureandthecontentofcarbonnanotubesonthepropertiesofnanocompositesbasedonpolyphenylenesulfide AT bognasztorch effectofprocessingtemperatureandthecontentofcarbonnanotubesonthepropertiesofnanocompositesbasedonpolyphenylenesulfide AT annaboczkowska effectofprocessingtemperatureandthecontentofcarbonnanotubesonthepropertiesofnanocompositesbasedonpolyphenylenesulfide |
_version_ |
1718431730879168512 |