Deep learning for irregularly and regularly missing data reconstruction
Abstract Deep learning (DL) is a powerful tool for mining features from data, which can theoretically avoid assumptions (e.g., linear events) constraining conventional interpolation methods. Motivated by this and inspired by image-to-image translation, we applied DL to irregularly and regularly miss...
Guardado en:
| Autores principales: | , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
Nature Portfolio
2020
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/d4a830846aec4e548fbeee9a348402f9 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|