Deep learning for irregularly and regularly missing data reconstruction
Abstract Deep learning (DL) is a powerful tool for mining features from data, which can theoretically avoid assumptions (e.g., linear events) constraining conventional interpolation methods. Motivated by this and inspired by image-to-image translation, we applied DL to irregularly and regularly miss...
Enregistré dans:
Auteurs principaux: | Xintao Chai, Hanming Gu, Feng Li, Hongyou Duan, Xiaobo Hu, Kai Lin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d4a830846aec4e548fbeee9a348402f9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Comparison of corneal irregular astigmatism by the type of corneal regular astigmatism
par: Yuta Ueno, et autres
Publié: (2021) -
Preparation of Cast Metallic Foams with Irregular and Regular Inner Structure
par: Ivana Kroupová, et autres
Publié: (2021) -
Deep-learning based reconstruction of the stomach from monoscopic video data
par: Hackner Ralf, et autres
Publié: (2020) -
Shape factor for regular and irregular matrix blocks in fractured porous media
par: Peyman Rostami, et autres
Publié: (2019) -
Missing Data Reconstruction Based on Spectral k-Support Norm Minimization for NB-IoT Data
par: Luo Xuegang, et autres
Publié: (2021)