Deep learning for irregularly and regularly missing data reconstruction

Abstract Deep learning (DL) is a powerful tool for mining features from data, which can theoretically avoid assumptions (e.g., linear events) constraining conventional interpolation methods. Motivated by this and inspired by image-to-image translation, we applied DL to irregularly and regularly miss...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Xintao Chai, Hanming Gu, Feng Li, Hongyou Duan, Xiaobo Hu, Kai Lin
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/d4a830846aec4e548fbeee9a348402f9
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!