Predicting phase behavior of grain boundaries with evolutionary search and machine learning
The atomic structure of grain boundary phases remains unknown and is difficult to investigate experimentally. Here, the authors use an evolutionary algorithm to computationally explore interface structures in higher dimensions and predict low-energy configurations, showing interface phases may be ub...
Guardado en:
Autores principales: | Qiang Zhu, Amit Samanta, Bingxi Li, Robert E. Rudd, Timofey Frolov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d4cc71fc2b0342fbb5d2ec4dbcad7d19 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Discovering the building blocks of atomic systems using machine learning: application to grain boundaries
por: Conrad W. Rosenbrock, et al.
Publicado: (2017) -
Prediction of thermal boundary resistance by the machine learning method
por: Tianzhuo Zhan, et al.
Publicado: (2017) -
Learning grain boundary segregation energy spectra in polycrystals
por: Malik Wagih, et al.
Publicado: (2020) -
Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries
por: Reza Darvishi Kamachali, et al.
Publicado: (2020) -
Machine learning and evolutionary prediction of superhard B-C-N compounds
por: Wei-Chih Chen, et al.
Publicado: (2021)