Predicting phase behavior of grain boundaries with evolutionary search and machine learning
The atomic structure of grain boundary phases remains unknown and is difficult to investigate experimentally. Here, the authors use an evolutionary algorithm to computationally explore interface structures in higher dimensions and predict low-energy configurations, showing interface phases may be ub...
Enregistré dans:
Auteurs principaux: | Qiang Zhu, Amit Samanta, Bingxi Li, Robert E. Rudd, Timofey Frolov |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d4cc71fc2b0342fbb5d2ec4dbcad7d19 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Discovering the building blocks of atomic systems using machine learning: application to grain boundaries
par: Conrad W. Rosenbrock, et autres
Publié: (2017) -
Prediction of thermal boundary resistance by the machine learning method
par: Tianzhuo Zhan, et autres
Publié: (2017) -
Learning grain boundary segregation energy spectra in polycrystals
par: Malik Wagih, et autres
Publié: (2020) -
Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries
par: Reza Darvishi Kamachali, et autres
Publié: (2020) -
Machine learning and evolutionary prediction of superhard B-C-N compounds
par: Wei-Chih Chen, et autres
Publié: (2021)