Random-PE: an efficient integration of random sequences into mammalian genome by prime editing
Abstract Prime editing (PE) enables efficiently targeted introduction of multiple types of small-sized genetic change without requiring double-strand breaks or donor templates. Here we designed a simple strategy to introduce random DNA sequences into targeted genomic loci by prime editing, which we...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Springer
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d5b86a6e19364c48be43fc0880890585 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d5b86a6e19364c48be43fc0880890585 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d5b86a6e19364c48be43fc08808905852021-11-21T12:03:47ZRandom-PE: an efficient integration of random sequences into mammalian genome by prime editing10.1186/s43556-021-00057-w2662-8651https://doaj.org/article/d5b86a6e19364c48be43fc08808905852021-11-01T00:00:00Zhttps://doi.org/10.1186/s43556-021-00057-whttps://doaj.org/toc/2662-8651Abstract Prime editing (PE) enables efficiently targeted introduction of multiple types of small-sized genetic change without requiring double-strand breaks or donor templates. Here we designed a simple strategy to introduce random DNA sequences into targeted genomic loci by prime editing, which we named random prime editing (Random-PE). In our strategy, the prime editing guide RNA (pegRNA) was engineered to harbor random sequences between the primer binding sequence (PBS) and homologous arm (HA) of the reverse transcriptase templates. With these pegRNAs, we achieved efficient targeted insertion or substitution of random sequences with different lengths, ranging from 5 to 10, in mammalian cells. Importantly, the diversity of inserted sequences is well preserved. By fine-tuning the design of random sequences, we were able to make simultaneously insertions or substitutions of random sequences in multiple sites, allowing in situ evolution of multiple positions in a given protein. Therefore, these results provide a framework for targeted integration of random sequences into genomes, which can be redirected for manifold applications, such as in situ protospacer adjacent motif (PAM) library construction, enhancer screening, and DNA barcoding.Yaoge JiaoLifang ZhouRui TaoYanhong WangYun HuLurong JiangLi LiShaohua YaoSpringerarticleCRISPR/Cas9Prime editingRandom sequenceGene evolutionMedicineRENMolecular Biomedicine, Vol 2, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
CRISPR/Cas9 Prime editing Random sequence Gene evolution Medicine R |
spellingShingle |
CRISPR/Cas9 Prime editing Random sequence Gene evolution Medicine R Yaoge Jiao Lifang Zhou Rui Tao Yanhong Wang Yun Hu Lurong Jiang Li Li Shaohua Yao Random-PE: an efficient integration of random sequences into mammalian genome by prime editing |
description |
Abstract Prime editing (PE) enables efficiently targeted introduction of multiple types of small-sized genetic change without requiring double-strand breaks or donor templates. Here we designed a simple strategy to introduce random DNA sequences into targeted genomic loci by prime editing, which we named random prime editing (Random-PE). In our strategy, the prime editing guide RNA (pegRNA) was engineered to harbor random sequences between the primer binding sequence (PBS) and homologous arm (HA) of the reverse transcriptase templates. With these pegRNAs, we achieved efficient targeted insertion or substitution of random sequences with different lengths, ranging from 5 to 10, in mammalian cells. Importantly, the diversity of inserted sequences is well preserved. By fine-tuning the design of random sequences, we were able to make simultaneously insertions or substitutions of random sequences in multiple sites, allowing in situ evolution of multiple positions in a given protein. Therefore, these results provide a framework for targeted integration of random sequences into genomes, which can be redirected for manifold applications, such as in situ protospacer adjacent motif (PAM) library construction, enhancer screening, and DNA barcoding. |
format |
article |
author |
Yaoge Jiao Lifang Zhou Rui Tao Yanhong Wang Yun Hu Lurong Jiang Li Li Shaohua Yao |
author_facet |
Yaoge Jiao Lifang Zhou Rui Tao Yanhong Wang Yun Hu Lurong Jiang Li Li Shaohua Yao |
author_sort |
Yaoge Jiao |
title |
Random-PE: an efficient integration of random sequences into mammalian genome by prime editing |
title_short |
Random-PE: an efficient integration of random sequences into mammalian genome by prime editing |
title_full |
Random-PE: an efficient integration of random sequences into mammalian genome by prime editing |
title_fullStr |
Random-PE: an efficient integration of random sequences into mammalian genome by prime editing |
title_full_unstemmed |
Random-PE: an efficient integration of random sequences into mammalian genome by prime editing |
title_sort |
random-pe: an efficient integration of random sequences into mammalian genome by prime editing |
publisher |
Springer |
publishDate |
2021 |
url |
https://doaj.org/article/d5b86a6e19364c48be43fc0880890585 |
work_keys_str_mv |
AT yaogejiao randompeanefficientintegrationofrandomsequencesintomammaliangenomebyprimeediting AT lifangzhou randompeanefficientintegrationofrandomsequencesintomammaliangenomebyprimeediting AT ruitao randompeanefficientintegrationofrandomsequencesintomammaliangenomebyprimeediting AT yanhongwang randompeanefficientintegrationofrandomsequencesintomammaliangenomebyprimeediting AT yunhu randompeanefficientintegrationofrandomsequencesintomammaliangenomebyprimeediting AT lurongjiang randompeanefficientintegrationofrandomsequencesintomammaliangenomebyprimeediting AT lili randompeanefficientintegrationofrandomsequencesintomammaliangenomebyprimeediting AT shaohuayao randompeanefficientintegrationofrandomsequencesintomammaliangenomebyprimeediting |
_version_ |
1718419273391538176 |