Mosaic Drug Efflux Gene Sequences from Commensal <italic toggle="yes">Neisseria</italic> Can Lead to Low-Level Azithromycin Resistance Expressed by <italic toggle="yes">Neisseria gonorrhoeae</italic> Clinical Isolates
ABSTRACT In a previous mBio article, Wadsworth and colleagues (mBio 9:e01419-18, 2018, https://doi.org/10.1128/mBio.01419-18) described Neisseria gonorrhoeae isolates that express low levels of azithromycin (Azi) resistance. Whole-genome sequencing and bioinformatic analysis suggested that the isola...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d6f8dcafebf64cdb8a4bd1608198e5f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d6f8dcafebf64cdb8a4bd1608198e5f4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d6f8dcafebf64cdb8a4bd1608198e5f42021-11-15T15:58:21ZMosaic Drug Efflux Gene Sequences from Commensal <italic toggle="yes">Neisseria</italic> Can Lead to Low-Level Azithromycin Resistance Expressed by <italic toggle="yes">Neisseria gonorrhoeae</italic> Clinical Isolates10.1128/mBio.01747-182150-7511https://doaj.org/article/d6f8dcafebf64cdb8a4bd1608198e5f42018-11-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01747-18https://doaj.org/toc/2150-7511ABSTRACT In a previous mBio article, Wadsworth and colleagues (mBio 9:e01419-18, 2018, https://doi.org/10.1128/mBio.01419-18) described Neisseria gonorrhoeae isolates that express low levels of azithromycin (Azi) resistance. Whole-genome sequencing and bioinformatic analysis suggested that the isolates had acquired DNA from commensal Neisseria spp. that caused numerous nucleotide changes in the mtr locus, which contains genes for a transcriptional repressor (MtrR) and three proteins (MtrC-MtrD-MtrE) that form a multidrug efflux pump known to export macrolides. Strong regions of linkage disequilibrium mapped to the overlapping mtrR and mtrCDE promoters and mtrD. Genetic analyses revealed that these mosaic-like sequences increased transcription of mtrCDE and MtrD function, respectively. These changes also had strong epistatic effects that collectively were responsible for decreased susceptibility to MtrCDE substrates, including Azi. The report emphasizes the importance of gene exchange among neisserial species and development of antibiotic resistance in gonococci, both of which have ramifications for detection of resistance markers and efficacy of antibiotic treatment regimens for gonorrhea.William M. ShaferAmerican Society for MicrobiologyarticleNeisseria gonorrhoeaeantibiotic resistancegonorrheatransformationMicrobiologyQR1-502ENmBio, Vol 9, Iss 5 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Neisseria gonorrhoeae antibiotic resistance gonorrhea transformation Microbiology QR1-502 |
spellingShingle |
Neisseria gonorrhoeae antibiotic resistance gonorrhea transformation Microbiology QR1-502 William M. Shafer Mosaic Drug Efflux Gene Sequences from Commensal <italic toggle="yes">Neisseria</italic> Can Lead to Low-Level Azithromycin Resistance Expressed by <italic toggle="yes">Neisseria gonorrhoeae</italic> Clinical Isolates |
description |
ABSTRACT In a previous mBio article, Wadsworth and colleagues (mBio 9:e01419-18, 2018, https://doi.org/10.1128/mBio.01419-18) described Neisseria gonorrhoeae isolates that express low levels of azithromycin (Azi) resistance. Whole-genome sequencing and bioinformatic analysis suggested that the isolates had acquired DNA from commensal Neisseria spp. that caused numerous nucleotide changes in the mtr locus, which contains genes for a transcriptional repressor (MtrR) and three proteins (MtrC-MtrD-MtrE) that form a multidrug efflux pump known to export macrolides. Strong regions of linkage disequilibrium mapped to the overlapping mtrR and mtrCDE promoters and mtrD. Genetic analyses revealed that these mosaic-like sequences increased transcription of mtrCDE and MtrD function, respectively. These changes also had strong epistatic effects that collectively were responsible for decreased susceptibility to MtrCDE substrates, including Azi. The report emphasizes the importance of gene exchange among neisserial species and development of antibiotic resistance in gonococci, both of which have ramifications for detection of resistance markers and efficacy of antibiotic treatment regimens for gonorrhea. |
format |
article |
author |
William M. Shafer |
author_facet |
William M. Shafer |
author_sort |
William M. Shafer |
title |
Mosaic Drug Efflux Gene Sequences from Commensal <italic toggle="yes">Neisseria</italic> Can Lead to Low-Level Azithromycin Resistance Expressed by <italic toggle="yes">Neisseria gonorrhoeae</italic> Clinical Isolates |
title_short |
Mosaic Drug Efflux Gene Sequences from Commensal <italic toggle="yes">Neisseria</italic> Can Lead to Low-Level Azithromycin Resistance Expressed by <italic toggle="yes">Neisseria gonorrhoeae</italic> Clinical Isolates |
title_full |
Mosaic Drug Efflux Gene Sequences from Commensal <italic toggle="yes">Neisseria</italic> Can Lead to Low-Level Azithromycin Resistance Expressed by <italic toggle="yes">Neisseria gonorrhoeae</italic> Clinical Isolates |
title_fullStr |
Mosaic Drug Efflux Gene Sequences from Commensal <italic toggle="yes">Neisseria</italic> Can Lead to Low-Level Azithromycin Resistance Expressed by <italic toggle="yes">Neisseria gonorrhoeae</italic> Clinical Isolates |
title_full_unstemmed |
Mosaic Drug Efflux Gene Sequences from Commensal <italic toggle="yes">Neisseria</italic> Can Lead to Low-Level Azithromycin Resistance Expressed by <italic toggle="yes">Neisseria gonorrhoeae</italic> Clinical Isolates |
title_sort |
mosaic drug efflux gene sequences from commensal <italic toggle="yes">neisseria</italic> can lead to low-level azithromycin resistance expressed by <italic toggle="yes">neisseria gonorrhoeae</italic> clinical isolates |
publisher |
American Society for Microbiology |
publishDate |
2018 |
url |
https://doaj.org/article/d6f8dcafebf64cdb8a4bd1608198e5f4 |
work_keys_str_mv |
AT williammshafer mosaicdrugeffluxgenesequencesfromcommensalitalictoggleyesneisseriaitaliccanleadtolowlevelazithromycinresistanceexpressedbyitalictoggleyesneisseriagonorrhoeaeitalicclinicalisolates |
_version_ |
1718427057263738880 |