LigD: A Structural Guide to the Multi-Tool of Bacterial Non-Homologous End Joining

DNA double-strand breaks are the most lethal form of damage for living organisms. The non-homologous end joining (NHEJ) pathway can repair these breaks without the use of a DNA template, making it a critical repair mechanism when DNA is not replicating, but also a threat to genome integrity. NHEJ re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Benhur Amare, Anthea Mo, Noorisah Khan, Dana J. Sowa, Monica M. Warner, Andriana Tetenych, Sara N. Andres
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/d73893c5acb64be99a63598409687c0d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d73893c5acb64be99a63598409687c0d
record_format dspace
spelling oai:doaj.org-article:d73893c5acb64be99a63598409687c0d2021-12-01T01:32:51ZLigD: A Structural Guide to the Multi-Tool of Bacterial Non-Homologous End Joining2296-889X10.3389/fmolb.2021.787709https://doaj.org/article/d73893c5acb64be99a63598409687c0d2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fmolb.2021.787709/fullhttps://doaj.org/toc/2296-889XDNA double-strand breaks are the most lethal form of damage for living organisms. The non-homologous end joining (NHEJ) pathway can repair these breaks without the use of a DNA template, making it a critical repair mechanism when DNA is not replicating, but also a threat to genome integrity. NHEJ requires proteins to anchor the DNA double-strand break, recruit additional repair proteins, and then depending on the damage at the DNA ends, fill in nucleotide gaps or add or remove phosphate groups before final ligation. In eukaryotes, NHEJ uses a multitude of proteins to carry out processing and ligation of the DNA double-strand break. Bacterial NHEJ, though, accomplishes repair primarily with only two proteins–Ku and LigD. While Ku binds the initial break and recruits LigD, it is LigD that is the primary DNA end processing machinery. Up to three enzymatic domains reside within LigD, dependent on the bacterial species. These domains are a polymerase domain, to fill in nucleotide gaps with a preference for ribonucleotide addition; a phosphoesterase domain, to generate a 3′-hydroxyl DNA end; and the ligase domain, to seal the phosphodiester backbone. To date, there are no experimental structures of wild-type LigD, but there are x-ray and nuclear magnetic resonance structures of the individual enzymatic domains from different bacteria and archaea, along with structural predictions of wild-type LigD via AlphaFold. In this review, we will examine the structures of the independent domains of LigD from different bacterial species and the contributions these structures have made to understanding the NHEJ repair mechanism. We will then examine how the experimental structures of the individual LigD enzymatic domains combine with structural predictions of LigD from different bacterial species and postulate how LigD coordinates multiple enzymatic activities to carry out DNA double-strand break repair in bacteria.Benhur AmareAnthea MoNoorisah KhanDana J. SowaDana J. SowaMonica M. WarnerMonica M. WarnerAndriana TetenychAndriana TetenychSara N. AndresSara N. AndresFrontiers Media S.A.articleLigDnon-homologous end joiningDNA double-strand breakprotein structure and functionligasepolymeraseBiology (General)QH301-705.5ENFrontiers in Molecular Biosciences, Vol 8 (2021)
institution DOAJ
collection DOAJ
language EN
topic LigD
non-homologous end joining
DNA double-strand break
protein structure and function
ligase
polymerase
Biology (General)
QH301-705.5
spellingShingle LigD
non-homologous end joining
DNA double-strand break
protein structure and function
ligase
polymerase
Biology (General)
QH301-705.5
Benhur Amare
Anthea Mo
Noorisah Khan
Dana J. Sowa
Dana J. Sowa
Monica M. Warner
Monica M. Warner
Andriana Tetenych
Andriana Tetenych
Sara N. Andres
Sara N. Andres
LigD: A Structural Guide to the Multi-Tool of Bacterial Non-Homologous End Joining
description DNA double-strand breaks are the most lethal form of damage for living organisms. The non-homologous end joining (NHEJ) pathway can repair these breaks without the use of a DNA template, making it a critical repair mechanism when DNA is not replicating, but also a threat to genome integrity. NHEJ requires proteins to anchor the DNA double-strand break, recruit additional repair proteins, and then depending on the damage at the DNA ends, fill in nucleotide gaps or add or remove phosphate groups before final ligation. In eukaryotes, NHEJ uses a multitude of proteins to carry out processing and ligation of the DNA double-strand break. Bacterial NHEJ, though, accomplishes repair primarily with only two proteins–Ku and LigD. While Ku binds the initial break and recruits LigD, it is LigD that is the primary DNA end processing machinery. Up to three enzymatic domains reside within LigD, dependent on the bacterial species. These domains are a polymerase domain, to fill in nucleotide gaps with a preference for ribonucleotide addition; a phosphoesterase domain, to generate a 3′-hydroxyl DNA end; and the ligase domain, to seal the phosphodiester backbone. To date, there are no experimental structures of wild-type LigD, but there are x-ray and nuclear magnetic resonance structures of the individual enzymatic domains from different bacteria and archaea, along with structural predictions of wild-type LigD via AlphaFold. In this review, we will examine the structures of the independent domains of LigD from different bacterial species and the contributions these structures have made to understanding the NHEJ repair mechanism. We will then examine how the experimental structures of the individual LigD enzymatic domains combine with structural predictions of LigD from different bacterial species and postulate how LigD coordinates multiple enzymatic activities to carry out DNA double-strand break repair in bacteria.
format article
author Benhur Amare
Anthea Mo
Noorisah Khan
Dana J. Sowa
Dana J. Sowa
Monica M. Warner
Monica M. Warner
Andriana Tetenych
Andriana Tetenych
Sara N. Andres
Sara N. Andres
author_facet Benhur Amare
Anthea Mo
Noorisah Khan
Dana J. Sowa
Dana J. Sowa
Monica M. Warner
Monica M. Warner
Andriana Tetenych
Andriana Tetenych
Sara N. Andres
Sara N. Andres
author_sort Benhur Amare
title LigD: A Structural Guide to the Multi-Tool of Bacterial Non-Homologous End Joining
title_short LigD: A Structural Guide to the Multi-Tool of Bacterial Non-Homologous End Joining
title_full LigD: A Structural Guide to the Multi-Tool of Bacterial Non-Homologous End Joining
title_fullStr LigD: A Structural Guide to the Multi-Tool of Bacterial Non-Homologous End Joining
title_full_unstemmed LigD: A Structural Guide to the Multi-Tool of Bacterial Non-Homologous End Joining
title_sort ligd: a structural guide to the multi-tool of bacterial non-homologous end joining
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/d73893c5acb64be99a63598409687c0d
work_keys_str_mv AT benhuramare ligdastructuralguidetothemultitoolofbacterialnonhomologousendjoining
AT antheamo ligdastructuralguidetothemultitoolofbacterialnonhomologousendjoining
AT noorisahkhan ligdastructuralguidetothemultitoolofbacterialnonhomologousendjoining
AT danajsowa ligdastructuralguidetothemultitoolofbacterialnonhomologousendjoining
AT danajsowa ligdastructuralguidetothemultitoolofbacterialnonhomologousendjoining
AT monicamwarner ligdastructuralguidetothemultitoolofbacterialnonhomologousendjoining
AT monicamwarner ligdastructuralguidetothemultitoolofbacterialnonhomologousendjoining
AT andrianatetenych ligdastructuralguidetothemultitoolofbacterialnonhomologousendjoining
AT andrianatetenych ligdastructuralguidetothemultitoolofbacterialnonhomologousendjoining
AT saranandres ligdastructuralguidetothemultitoolofbacterialnonhomologousendjoining
AT saranandres ligdastructuralguidetothemultitoolofbacterialnonhomologousendjoining
_version_ 1718405990767919104