Silicon attenuates calcium deficiency by increasing ascorbic acid content, growth and quality of cabbage leaves

Abstract Calcium (Ca) deficiency in cabbage plants induces oxidative damage, hampering growth and decreasing quality, however, it is hypothesized that silicon (Si) added to the nutrient solution may alleviate crop losses. Therefore, this study aims at evaluating whether silicon supplied in the nutri...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dalila Lopes da Silva, Renato de Mello Prado, Luis Felipe Lata Tenesaca, José Lucas Farias da Silva, Ben-Hur Mattiuz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d822a48f798d4299add61590c1fdf443
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Calcium (Ca) deficiency in cabbage plants induces oxidative damage, hampering growth and decreasing quality, however, it is hypothesized that silicon (Si) added to the nutrient solution may alleviate crop losses. Therefore, this study aims at evaluating whether silicon supplied in the nutrient solution reduces, in fact, the calcium deficiency effects on cabbage plants. In a greenhouse, cabbage plants were grown using nutrient solutions with Ca sufficiency and Ca deficiency (5 mM) without and with added silicon (2.5 mM), arranged as a 2 × 2 factorial in randomized blocks, with five replications. At 91 days after transplanting, the plants were harvested for biological evaluations. In the treatment without added Si, Ca deficiency promoted oxidative stress, low antioxidant content, decreased dry matter, and lower quality leaf. On the other hand, added Si attenuated Ca deficiency in cabbage by decreasing cell extravasation while increasing both ascorbic acid content and fresh and dry matter, providing firmer leaves due to diminished leaf water loss after harvesting. We highlighted the agronomic importance of Si added to the nutrient solution, especially in crops at risk of Ca deficiency.