Sequential transfer learning based on hierarchical clustering for improved performance in deep learning based food segmentation
Abstract Accurately segmenting foods from optical images is a challenging task, yet becoming possible with the help of recent advances in Deep Learning based solutions. Automated identification of food items opens up possibilities of useful applications like nutrition intake monitoring. Given large...
Enregistré dans:
Auteurs principaux: | Mia S. N. Siemon, A. S. M. Shihavuddin, Gitte Ravn-Haren |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d8ba52c9b7714b63971be8b054b8cae2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images
par: Guangzhou An, et autres
Publié: (2021) -
Design of lung nodules segmentation and recognition algorithm based on deep learning
par: Hui Yu, et autres
Publié: (2021) -
Deep Learning-Based Instance Segmentation for Indoor Fire Load Recognition
par: Yu-Cheng Zhou, et autres
Publié: (2021) -
Visual tracking based on transfer learning of deep salience information
par: Zuo Haorui, et autres
Publié: (2020) -
A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis
par: Yongli Xu, et autres
Publié: (2021)