<italic>p</italic>-Power Exponential Mechanisms for Differentially Private Machine Learning
Differentially private stochastic gradient descent (DP-SGD) that perturbs the clipped gradients is a popular approach for private machine learning. Gaussian mechanism GM, combined with the moments accountant (MA), has demonstrated a much better privacy-utility tradeoff than using the advanced compos...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d91648a81c8e4395a2b8d3247e9c873c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|