<italic>p</italic>-Power Exponential Mechanisms for Differentially Private Machine Learning

Differentially private stochastic gradient descent (DP-SGD) that perturbs the clipped gradients is a popular approach for private machine learning. Gaussian mechanism GM, combined with the moments accountant (MA), has demonstrated a much better privacy-utility tradeoff than using the advanced compos...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yanan Li, Xuebin Ren, Fangyuan Zhao, Shusen Yang
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/d91648a81c8e4395a2b8d3247e9c873c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d91648a81c8e4395a2b8d3247e9c873c
record_format dspace
spelling oai:doaj.org-article:d91648a81c8e4395a2b8d3247e9c873c2021-11-26T00:00:50Z<italic>p</italic>-Power Exponential Mechanisms for Differentially Private Machine Learning2169-353610.1109/ACCESS.2021.3129130https://doaj.org/article/d91648a81c8e4395a2b8d3247e9c873c2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9618957/https://doaj.org/toc/2169-3536Differentially private stochastic gradient descent (DP-SGD) that perturbs the clipped gradients is a popular approach for private machine learning. Gaussian mechanism GM, combined with the moments accountant (MA), has demonstrated a much better privacy-utility tradeoff than using the advanced composition theorem. However, it is unclear whether the tradeoff can be further improved by other mechanisms with different noise distributions. To this end, we extend GM (<inline-formula> <tex-math notation="LaTeX">$p=2$ </tex-math></inline-formula>) to the generalized <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>-power exponential mechanism (<inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM with <inline-formula> <tex-math notation="LaTeX">$p&gt;0$ </tex-math></inline-formula>) family and show its privacy guarantee. Straightforwardly, we can enhance the privacy-utility tradeoff of GM by searching noise distribution in the wider mechanism space. To implement <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM in practice, we design an effective sampling method and extend MA to <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM for tightly estimating privacy loss. Besides, we formally prove the non-optimality of GM based on the variation method. Numerical experiments validate the properties of <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM and illustrate a comprehensive comparison between <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM and the other two state-of-the-art methods. Experimental results show that <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM is preferred when the noise variance is relatively small to the signal and the dimension is not too high.Yanan LiXuebin RenFangyuan ZhaoShusen YangIEEEarticlePrivacy protectionprivacy-utility trade-offnoise varianceGaussian mechanismmoments accountantElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 155018-155034 (2021)
institution DOAJ
collection DOAJ
language EN
topic Privacy protection
privacy-utility trade-off
noise variance
Gaussian mechanism
moments accountant
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Privacy protection
privacy-utility trade-off
noise variance
Gaussian mechanism
moments accountant
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Yanan Li
Xuebin Ren
Fangyuan Zhao
Shusen Yang
<italic>p</italic>-Power Exponential Mechanisms for Differentially Private Machine Learning
description Differentially private stochastic gradient descent (DP-SGD) that perturbs the clipped gradients is a popular approach for private machine learning. Gaussian mechanism GM, combined with the moments accountant (MA), has demonstrated a much better privacy-utility tradeoff than using the advanced composition theorem. However, it is unclear whether the tradeoff can be further improved by other mechanisms with different noise distributions. To this end, we extend GM (<inline-formula> <tex-math notation="LaTeX">$p=2$ </tex-math></inline-formula>) to the generalized <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>-power exponential mechanism (<inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM with <inline-formula> <tex-math notation="LaTeX">$p&gt;0$ </tex-math></inline-formula>) family and show its privacy guarantee. Straightforwardly, we can enhance the privacy-utility tradeoff of GM by searching noise distribution in the wider mechanism space. To implement <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM in practice, we design an effective sampling method and extend MA to <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM for tightly estimating privacy loss. Besides, we formally prove the non-optimality of GM based on the variation method. Numerical experiments validate the properties of <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM and illustrate a comprehensive comparison between <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM and the other two state-of-the-art methods. Experimental results show that <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula>EM is preferred when the noise variance is relatively small to the signal and the dimension is not too high.
format article
author Yanan Li
Xuebin Ren
Fangyuan Zhao
Shusen Yang
author_facet Yanan Li
Xuebin Ren
Fangyuan Zhao
Shusen Yang
author_sort Yanan Li
title <italic>p</italic>-Power Exponential Mechanisms for Differentially Private Machine Learning
title_short <italic>p</italic>-Power Exponential Mechanisms for Differentially Private Machine Learning
title_full <italic>p</italic>-Power Exponential Mechanisms for Differentially Private Machine Learning
title_fullStr <italic>p</italic>-Power Exponential Mechanisms for Differentially Private Machine Learning
title_full_unstemmed <italic>p</italic>-Power Exponential Mechanisms for Differentially Private Machine Learning
title_sort <italic>p</italic>-power exponential mechanisms for differentially private machine learning
publisher IEEE
publishDate 2021
url https://doaj.org/article/d91648a81c8e4395a2b8d3247e9c873c
work_keys_str_mv AT yananli italicpitalicpowerexponentialmechanismsfordifferentiallyprivatemachinelearning
AT xuebinren italicpitalicpowerexponentialmechanismsfordifferentiallyprivatemachinelearning
AT fangyuanzhao italicpitalicpowerexponentialmechanismsfordifferentiallyprivatemachinelearning
AT shusenyang italicpitalicpowerexponentialmechanismsfordifferentiallyprivatemachinelearning
_version_ 1718409997049659392