Sequence-to-function deep learning frameworks for engineered riboregulators
The design of synthetic biology circuits remains challenging due to poorly understood design rules. Here the authors introduce STORM and NuSpeak, two deep-learning architectures to characterize and optimize toehold switches.
Guardado en:
Autores principales: | Jacqueline A. Valeri, Katherine M. Collins, Pradeep Ramesh, Miguel A. Alcantar, Bianca A. Lepe, Timothy K. Lu, Diogo M. Camacho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d92e1c3c09eb4750aa706310533722cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
por: John-William Sidhom, et al.
Publicado: (2021) -
ECNet is an evolutionary context-integrated deep learning framework for protein engineering
por: Yunan Luo, et al.
Publicado: (2021) -
Author Correction: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
por: John-William Sidhom, et al.
Publicado: (2021) -
Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework
por: Luke Oakden-Rayner, et al.
Publicado: (2017) -
Deep learning to predict the lab-of-origin of engineered DNA
por: Alec A. K. Nielsen, et al.
Publicado: (2018)