Sequence-to-function deep learning frameworks for engineered riboregulators
The design of synthetic biology circuits remains challenging due to poorly understood design rules. Here the authors introduce STORM and NuSpeak, two deep-learning architectures to characterize and optimize toehold switches.
Enregistré dans:
Auteurs principaux: | Jacqueline A. Valeri, Katherine M. Collins, Pradeep Ramesh, Miguel A. Alcantar, Bianca A. Lepe, Timothy K. Lu, Diogo M. Camacho |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d92e1c3c09eb4750aa706310533722cf |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
par: John-William Sidhom, et autres
Publié: (2021) -
ECNet is an evolutionary context-integrated deep learning framework for protein engineering
par: Yunan Luo, et autres
Publié: (2021) -
Author Correction: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
par: John-William Sidhom, et autres
Publié: (2021) -
Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework
par: Luke Oakden-Rayner, et autres
Publié: (2017) -
Deep learning to predict the lab-of-origin of engineered DNA
par: Alec A. K. Nielsen, et autres
Publié: (2018)