Least-squares community extraction in feature-rich networks using similarity data.
We explore a doubly-greedy approach to the issue of community detection in feature-rich networks. According to this approach, both the network and feature data are straightforwardly recovered from the underlying unknown non-overlapping communities, supplied with a center in the feature space and int...
Enregistré dans:
Auteurs principaux: | Soroosh Shalileh, Boris Mirkin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d93a00a917b64d39a6a3f6d18cadbc80 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Error analysis of a least squares pseudo-derivative moving least squares method
par: Clack,Jhules, et autres
Publié: (2017) -
Kernel weighted least square approach for imputing missing values of metabolomics data
par: Nishith Kumar, et autres
Publié: (2021) -
Multispectral Fusion of RGB and NIR Images Using Weighted Least Squares and Convolution Neural Networks
par: Cheolkon Jung, et autres
Publié: (2021) -
Economic Growth Determinants of Asean Economic Community: Feasible Generalized Least Square Approach
par: Yuliadi Imamudin, et autres
Publié: (2021) -
Noise Removal of ECG Signal Using Recursive LeastSquare Algorithms
par: Noor K. Muhsin
Publié: (2011)