First-principles prediction of electronic transport in fabricated semiconductor heterostructures via physics-aware machine learning

Abstract First-principles techniques for electronic transport property prediction have seen rapid progress in recent years. However, it remains a challenge to predict properties of heterostructures incorporating fabrication-dependent variability. Machine-learning (ML) approaches are increasingly bei...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Artem K. Pimachev, Sanghamitra Neogi
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/d9be47d814294a37a10ea655404a7cf6
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!