First-principles prediction of electronic transport in fabricated semiconductor heterostructures via physics-aware machine learning
Abstract First-principles techniques for electronic transport property prediction have seen rapid progress in recent years. However, it remains a challenge to predict properties of heterostructures incorporating fabrication-dependent variability. Machine-learning (ML) approaches are increasingly bei...
Guardado en:
Autores principales: | Artem K. Pimachev, Sanghamitra Neogi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d9be47d814294a37a10ea655404a7cf6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass
por: Evgenii Tsymbalov, et al.
Publicado: (2021) -
Learning surface molecular structures via machine vision
por: Maxim Ziatdinov, et al.
Publicado: (2017) -
Diverse electronic and magnetic properties of CrS2 enabling strain-controlled 2D lateral heterostructure spintronic devices
por: Kaiyun Chen, et al.
Publicado: (2021) -
Electron–plasmon and electron–magnon scattering in ferromagnets from first principles by combining GW and GT self-energies
por: Dmitrii Nabok, et al.
Publicado: (2021) -
Unraveling energy and charge transfer in type-II van der Waals heterostructures
por: Junyi Liu, et al.
Publicado: (2021)