Interpretable survival prediction for colorectal cancer using deep learning
Abstract Deriving interpretable prognostic features from deep-learning-based prognostic histopathology models remains a challenge. In this study, we developed a deep learning system (DLS) for predicting disease-specific survival for stage II and III colorectal cancer using 3652 cases (27,300 slides)...
Enregistré dans:
Auteurs principaux: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/da537cd907ad48cb854376055689af37 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|