Interpretable survival prediction for colorectal cancer using deep learning
Abstract Deriving interpretable prognostic features from deep-learning-based prognostic histopathology models remains a challenge. In this study, we developed a deep learning system (DLS) for predicting disease-specific survival for stage II and III colorectal cancer using 3652 cases (27,300 slides)...
Guardado en:
Autores principales: | Ellery Wulczyn, David F. Steiner, Melissa Moran, Markus Plass, Robert Reihs, Fraser Tan, Isabelle Flament-Auvigne, Trissia Brown, Peter Regitnig, Po-Hsuan Cameron Chen, Narayan Hegde, Apaar Sadhwani, Robert MacDonald, Benny Ayalew, Greg S. Corrado, Lily H. Peng, Daniel Tse, Heimo Müller, Zhaoyang Xu, Yun Liu, Martin C. Stumpe, Kurt Zatloukal, Craig H. Mermel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/da537cd907ad48cb854376055689af37 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images
por: Apaar Sadhwani, et al.
Publicado: (2021) -
Democracy Deficit in China: A Choice or Foreordained
por: Trissia Wijaya
Publicado: (2015) -
Momentum and disposition effect in the US stock market
por: Ranjeeta Sadhwani, et al.
Publicado: (2021) -
Management of Thrips, Scirtothrips dorsalis Hood, on Rose under Open-Field and Protected Conditions
por: Jayalaxmi Narayan Hegde, et al.
Publicado: (2011) -
Priming, Triggering, Adaptation and Senescence (PTAS): A Hypothesis for a Common Damage Mechanism of Steatohepatitis
por: Peter M. Abuja, et al.
Publicado: (2021)