Temporal pairwise spike correlations fully capture single-neuron information
To understand the neural code it is important to determine what spiking features contain the relevant information. Here, the authors use mathematical approaches to show that two pair-wise correlation functions, the autocorrelation function within spike trains and cross-correlation function across st...
Enregistré dans:
Auteurs principaux: | Amadeus Dettner, Sabrina Münzberg, Tatjana Tchumatchenko |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/dc9da12052624604b39b2bd3e17f67d0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Capturing spike train temporal pattern with wavelet average coefficient for brain machine interface
par: Shixian Wen, et autres
Publié: (2021) -
Pairwise analysis can account for network structures arising from spike-timing dependent plasticity.
par: Baktash Babadi, et autres
Publié: (2013) -
Pairwise Correlation Analysis of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Dataset Reveals Significant Feature Correlation
par: Erik D. Huckvale, et autres
Publié: (2021) -
A Fully-Automatic Gap Filling Approach for Motion Capture Trajectories
par: Diana Gomes, et autres
Publié: (2021) -
Pairwise detection of site-specific receptor phosphorylations using single-molecule blotting
par: Kyung Lock Kim, et autres
Publié: (2016)