Estimating the phase volume fraction of multi-phase steel via unsupervised deep learning
Abstract Advanced high strength steel (AHSS) is a steel of multi-phase microstructure that is processed under several conditions to meet the current high-performance requirements from the industry. Deep neural network (DNN) has emerged as a promising tool in materials science for the task of estimat...
Guardado en:
Autores principales: | Sung Wook Kim, Seong-Hoon Kang, Se-Jong Kim, Seungchul Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dcbc6a1fd009497aa6d565446bece42c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantum enhanced multiple-phase estimation with multi-mode N00N states
por: Seongjin Hong, et al.
Publicado: (2021) -
Deep learning for end-to-end kidney cancer diagnosis on multi-phase abdominal computed tomography
por: Kwang-Hyun Uhm, et al.
Publicado: (2021) -
Unsupervised multi-source domain adaptation with no observable source data.
por: Hyunsik Jeon, et al.
Publicado: (2021) -
Author Correction: Deep learning for high-resolution and high-sensitivity interferometric phase contrast imaging
por: Seho Lee, et al.
Publicado: (2021) -
Multi-Dimensional Angle of Arrival Estimation by Circular Phased Adaptive Array Antennas
por: Bassim Sayed Mohammed
Publicado: (2017)