Estimating the phase volume fraction of multi-phase steel via unsupervised deep learning
Abstract Advanced high strength steel (AHSS) is a steel of multi-phase microstructure that is processed under several conditions to meet the current high-performance requirements from the industry. Deep neural network (DNN) has emerged as a promising tool in materials science for the task of estimat...
Enregistré dans:
Auteurs principaux: | Sung Wook Kim, Seong-Hoon Kang, Se-Jong Kim, Seungchul Lee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/dcbc6a1fd009497aa6d565446bece42c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Quantum enhanced multiple-phase estimation with multi-mode N00N states
par: Seongjin Hong, et autres
Publié: (2021) -
Deep learning for end-to-end kidney cancer diagnosis on multi-phase abdominal computed tomography
par: Kwang-Hyun Uhm, et autres
Publié: (2021) -
Unsupervised multi-source domain adaptation with no observable source data.
par: Hyunsik Jeon, et autres
Publié: (2021) -
Author Correction: Deep learning for high-resolution and high-sensitivity interferometric phase contrast imaging
par: Seho Lee, et autres
Publié: (2021) -
Multi-Dimensional Angle of Arrival Estimation by Circular Phased Adaptive Array Antennas
par: Bassim Sayed Mohammed
Publié: (2017)