Machine learning enables completely automatic tuning of a quantum device faster than human experts

To optimize operating conditions of large scale semiconductor quantum devices, a large parameter space has to be explored. Here, the authors report a machine learning algorithm to navigate the entire parameter space of gate-defined quantum dot devices, showing about 180 times faster than a pure rand...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: H. Moon, D. T. Lennon, J. Kirkpatrick, N. M. van Esbroeck, L. C. Camenzind, Liuqi Yu, F. Vigneau, D. M. Zumbühl, G. A. D. Briggs, M. A. Osborne, D. Sejdinovic, E. A. Laird, N. Ares
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/dd86a9c2a00a4779a6625d51bea8a4a4
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!