Machine learning enables completely automatic tuning of a quantum device faster than human experts
To optimize operating conditions of large scale semiconductor quantum devices, a large parameter space has to be explored. Here, the authors report a machine learning algorithm to navigate the entire parameter space of gate-defined quantum dot devices, showing about 180 times faster than a pure rand...
Enregistré dans:
Auteurs principaux: | , , , , , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/dd86a9c2a00a4779a6625d51bea8a4a4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|