A deep learning method for counting white blood cells in bone marrow images
Abstract Background Differentiating and counting various types of white blood cells (WBC) in bone marrow smears allows the detection of infection, anemia, and leukemia or analysis of a process of treatment. However, manually locating, identifying, and counting the different classes of WBC is time-co...
Guardado en:
Autores principales: | Da Wang, Maxwell Hwang, Wei-Cheng Jiang, Kefeng Ding, Hsiao Chien Chang, Kao-Shing Hwang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/de6a87efa12f47cbb4c7d1d6e335f8ff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Low-count whole-body PET with deep learning in a multicenter and externally validated study
por: Akshay S. Chaudhari, et al.
Publicado: (2021) -
Author Correction: Low-count whole-body PET with deep learning in a multicenter and externally validated study
por: Akshay S. Chaudhari, et al.
Publicado: (2021) -
How IT preparedness helped to create a digital field hospital to care for COVID-19 patients in S. Korea
por: Se Young Jung, et al.
Publicado: (2020) -
Management of cardiovascular disease using an mHealth tool: a randomized clinical trial
por: Si-Hyuck Kang, et al.
Publicado: (2021) -
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
por: Wei Gao, et al.
Publicado: (2021)