A deep learning method for counting white blood cells in bone marrow images
Abstract Background Differentiating and counting various types of white blood cells (WBC) in bone marrow smears allows the detection of infection, anemia, and leukemia or analysis of a process of treatment. However, manually locating, identifying, and counting the different classes of WBC is time-co...
Enregistré dans:
Auteurs principaux: | Da Wang, Maxwell Hwang, Wei-Cheng Jiang, Kefeng Ding, Hsiao Chien Chang, Kao-Shing Hwang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/de6a87efa12f47cbb4c7d1d6e335f8ff |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Low-count whole-body PET with deep learning in a multicenter and externally validated study
par: Akshay S. Chaudhari, et autres
Publié: (2021) -
Author Correction: Low-count whole-body PET with deep learning in a multicenter and externally validated study
par: Akshay S. Chaudhari, et autres
Publié: (2021) -
How IT preparedness helped to create a digital field hospital to care for COVID-19 patients in S. Korea
par: Se Young Jung, et autres
Publié: (2020) -
Management of cardiovascular disease using an mHealth tool: a randomized clinical trial
par: Si-Hyuck Kang, et autres
Publié: (2021) -
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
par: Wei Gao, et autres
Publié: (2021)