Efficient binaural rendering of spherical microphone array data by linear filtering

Abstract High-quality rendering of spatial sound fields in real-time is becoming increasingly important with the steadily growing interest in virtual and augmented reality technologies. Typically, a spherical microphone array (SMA) is used to capture a spatial sound field. The captured sound field c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Johannes M. Arend, Tim Lübeck, Christoph Pörschmann
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/de6bebedbada47bf877407e188f0b49b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract High-quality rendering of spatial sound fields in real-time is becoming increasingly important with the steadily growing interest in virtual and augmented reality technologies. Typically, a spherical microphone array (SMA) is used to capture a spatial sound field. The captured sound field can be reproduced over headphones in real-time using binaural rendering, virtually placing a single listener in the sound field. Common methods for binaural rendering first spatially encode the sound field by transforming it to the spherical harmonics domain and then decode the sound field binaurally by combining it with head-related transfer functions (HRTFs). However, these rendering methods are computationally demanding, especially for high-order SMAs, and require implementing quite sophisticated real-time signal processing. This paper presents a computationally more efficient method for real-time binaural rendering of SMA signals by linear filtering. The proposed method allows representing any common rendering chain as a set of precomputed finite impulse response filters, which are then applied to the SMA signals in real-time using fast convolution to produce the binaural signals. Results of the technical evaluation show that the presented approach is equivalent to conventional rendering methods while being computationally less demanding and easier to implement using any real-time convolution system. However, the lower computational complexity goes along with lower flexibility. On the one hand, encoding and decoding are no longer decoupled, and on the other hand, sound field transformations in the SH domain can no longer be performed. Consequently, in the proposed method, a filter set must be precomputed and stored for each possible head orientation of the listener, leading to higher memory requirements than the conventional methods. As such, the approach is particularly well suited for efficient real-time binaural rendering of SMA signals in a fixed setup where usually a limited range of head orientations is sufficient, such as live concert streaming or VR teleconferencing.