An improved swarm optimization for parameter estimation and biological model selection.
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incor...
Enregistré dans:
Auteurs principaux: | Afnizanfaizal Abdullah, Safaai Deris, Mohd Saberi Mohamad, Sohail Anwar |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2013
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/de9f0fbcefc84d808b9b0493e0153a3f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Differential Bees Flux Balance Analysis with OptKnock for in silico microbial strains optimization.
par: Yee Wen Choon, et autres
Publié: (2014) -
Development of an Artificial Neural Network Utilizing Particle Swarm Optimization for Modeling the Spray Drying of Coconut Milk
par: Jesse Lee Kar Ming, et autres
Publié: (2021) -
Parameter identification of sound absorption model of porous materials based on modified particle swarm optimization algorithm.
par: Xiaomei Xu, et autres
Publié: (2021) -
Particle Swarm Optimization (PSO) Model for Hydroponics pH Control System
par: Mohammad Farid Saaid, et autres
Publié: (2021) -
Characterization of Giant Magnetostrictive Materials Using Three Complex Material Parameters by Particle Swarm Optimization
par: Yukai Chen, et autres
Publié: (2021)