Longitudinal data analysis for rare variants detection with penalized quadratic inference function
Abstract Longitudinal genetic data provide more information regarding genetic effects over time compared with cross-sectional data. Coupled with next-generation sequencing technologies, it becomes reality to identify important genes containing both rare and common variants in a longitudinal design....
Guardado en:
Autores principales: | Hongyan Cao, Zhi Li, Haitao Yang, Yuehua Cui, Yanbo Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df13efaeca734d6c994cf7dd22e9c555 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A variant of the quadratic functional equation on semigroups
por: Fadli,B., et al.
Publicado: (2018) -
Randomized and non-randomized designs for causal inference with longitudinal data in rare disorders
por: Rima Izem, et al.
Publicado: (2021) -
Orthogonal Stability of an Additive-Quadratic Functional Equation
por: Park Choonkil
Publicado: (2011) -
On Jensen’s and the quadratic functional equations with involutions
por: Fadli,B., et al.
Publicado: (2016) -
Jensen’s and the quadratic functional equations with an endomorphism
por: Sabour,KH, et al.
Publicado: (2017)