Longitudinal data analysis for rare variants detection with penalized quadratic inference function
Abstract Longitudinal genetic data provide more information regarding genetic effects over time compared with cross-sectional data. Coupled with next-generation sequencing technologies, it becomes reality to identify important genes containing both rare and common variants in a longitudinal design....
Enregistré dans:
| Auteurs principaux: | Hongyan Cao, Zhi Li, Haitao Yang, Yuehua Cui, Yanbo Zhang |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2017
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/df13efaeca734d6c994cf7dd22e9c555 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A variant of the quadratic functional equation on semigroups
par: Fadli,B., et autres
Publié: (2018) -
Randomized and non-randomized designs for causal inference with longitudinal data in rare disorders
par: Rima Izem, et autres
Publié: (2021) -
Orthogonal Stability of an Additive-Quadratic Functional Equation
par: Park Choonkil
Publié: (2011) -
On Jensen’s and the quadratic functional equations with involutions
par: Fadli,B., et autres
Publié: (2016) -
Jensen’s and the quadratic functional equations with an endomorphism
par: Sabour,KH, et autres
Publié: (2017)