Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships
Predicting complex phenotypes from genomic information is still a challenge. Here, the authors use an evolutionarily informed machine learning approach within and across species to predict genes affecting nitrogen utilization in crops, and show their approach is also useful in mammalian systems.
Enregistré dans:
Auteurs principaux: | , , , , , , , , , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/df8c1a08be1a4c64bc07660726b1c1e2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|