Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships

Predicting complex phenotypes from genomic information is still a challenge. Here, the authors use an evolutionarily informed machine learning approach within and across species to predict genes affecting nitrogen utilization in crops, and show their approach is also useful in mammalian systems.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Chia-Yi Cheng, Ying Li, Kranthi Varala, Jessica Bubert, Ji Huang, Grace J. Kim, Justin Halim, Jennifer Arp, Hung-Jui S. Shih, Grace Levinson, Seo Hyun Park, Ha Young Cho, Stephen P. Moose, Gloria M. Coruzzi
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/df8c1a08be1a4c64bc07660726b1c1e2
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!