Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships

Predicting complex phenotypes from genomic information is still a challenge. Here, the authors use an evolutionarily informed machine learning approach within and across species to predict genes affecting nitrogen utilization in crops, and show their approach is also useful in mammalian systems.

Guardado en:
Detalles Bibliográficos
Autores principales: Chia-Yi Cheng, Ying Li, Kranthi Varala, Jessica Bubert, Ji Huang, Grace J. Kim, Justin Halim, Jennifer Arp, Hung-Jui S. Shih, Grace Levinson, Seo Hyun Park, Ha Young Cho, Stephen P. Moose, Gloria M. Coruzzi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/df8c1a08be1a4c64bc07660726b1c1e2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Predicting complex phenotypes from genomic information is still a challenge. Here, the authors use an evolutionarily informed machine learning approach within and across species to predict genes affecting nitrogen utilization in crops, and show their approach is also useful in mammalian systems.