Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships

Predicting complex phenotypes from genomic information is still a challenge. Here, the authors use an evolutionarily informed machine learning approach within and across species to predict genes affecting nitrogen utilization in crops, and show their approach is also useful in mammalian systems.

Guardado en:
Detalles Bibliográficos
Autores principales: Chia-Yi Cheng, Ying Li, Kranthi Varala, Jessica Bubert, Ji Huang, Grace J. Kim, Justin Halim, Jennifer Arp, Hung-Jui S. Shih, Grace Levinson, Seo Hyun Park, Ha Young Cho, Stephen P. Moose, Gloria M. Coruzzi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/df8c1a08be1a4c64bc07660726b1c1e2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:df8c1a08be1a4c64bc07660726b1c1e2
record_format dspace
spelling oai:doaj.org-article:df8c1a08be1a4c64bc07660726b1c1e22021-12-02T17:26:56ZEvolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships10.1038/s41467-021-25893-w2041-1723https://doaj.org/article/df8c1a08be1a4c64bc07660726b1c1e22021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25893-whttps://doaj.org/toc/2041-1723Predicting complex phenotypes from genomic information is still a challenge. Here, the authors use an evolutionarily informed machine learning approach within and across species to predict genes affecting nitrogen utilization in crops, and show their approach is also useful in mammalian systems.Chia-Yi ChengYing LiKranthi VaralaJessica BubertJi HuangGrace J. KimJustin HalimJennifer ArpHung-Jui S. ShihGrace LevinsonSeo Hyun ParkHa Young ChoStephen P. MooseGloria M. CoruzziNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Chia-Yi Cheng
Ying Li
Kranthi Varala
Jessica Bubert
Ji Huang
Grace J. Kim
Justin Halim
Jennifer Arp
Hung-Jui S. Shih
Grace Levinson
Seo Hyun Park
Ha Young Cho
Stephen P. Moose
Gloria M. Coruzzi
Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships
description Predicting complex phenotypes from genomic information is still a challenge. Here, the authors use an evolutionarily informed machine learning approach within and across species to predict genes affecting nitrogen utilization in crops, and show their approach is also useful in mammalian systems.
format article
author Chia-Yi Cheng
Ying Li
Kranthi Varala
Jessica Bubert
Ji Huang
Grace J. Kim
Justin Halim
Jennifer Arp
Hung-Jui S. Shih
Grace Levinson
Seo Hyun Park
Ha Young Cho
Stephen P. Moose
Gloria M. Coruzzi
author_facet Chia-Yi Cheng
Ying Li
Kranthi Varala
Jessica Bubert
Ji Huang
Grace J. Kim
Justin Halim
Jennifer Arp
Hung-Jui S. Shih
Grace Levinson
Seo Hyun Park
Ha Young Cho
Stephen P. Moose
Gloria M. Coruzzi
author_sort Chia-Yi Cheng
title Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships
title_short Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships
title_full Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships
title_fullStr Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships
title_full_unstemmed Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships
title_sort evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/df8c1a08be1a4c64bc07660726b1c1e2
work_keys_str_mv AT chiayicheng evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT yingli evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT kranthivarala evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT jessicabubert evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT jihuang evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT gracejkim evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT justinhalim evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT jenniferarp evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT hungjuisshih evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT gracelevinson evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT seohyunpark evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT hayoungcho evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT stephenpmoose evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
AT gloriamcoruzzi evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships
_version_ 1718380819067699200