Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships
Predicting complex phenotypes from genomic information is still a challenge. Here, the authors use an evolutionarily informed machine learning approach within and across species to predict genes affecting nitrogen utilization in crops, and show their approach is also useful in mammalian systems.
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df8c1a08be1a4c64bc07660726b1c1e2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:df8c1a08be1a4c64bc07660726b1c1e2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:df8c1a08be1a4c64bc07660726b1c1e22021-12-02T17:26:56ZEvolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships10.1038/s41467-021-25893-w2041-1723https://doaj.org/article/df8c1a08be1a4c64bc07660726b1c1e22021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25893-whttps://doaj.org/toc/2041-1723Predicting complex phenotypes from genomic information is still a challenge. Here, the authors use an evolutionarily informed machine learning approach within and across species to predict genes affecting nitrogen utilization in crops, and show their approach is also useful in mammalian systems.Chia-Yi ChengYing LiKranthi VaralaJessica BubertJi HuangGrace J. KimJustin HalimJennifer ArpHung-Jui S. ShihGrace LevinsonSeo Hyun ParkHa Young ChoStephen P. MooseGloria M. CoruzziNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Chia-Yi Cheng Ying Li Kranthi Varala Jessica Bubert Ji Huang Grace J. Kim Justin Halim Jennifer Arp Hung-Jui S. Shih Grace Levinson Seo Hyun Park Ha Young Cho Stephen P. Moose Gloria M. Coruzzi Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships |
description |
Predicting complex phenotypes from genomic information is still a challenge. Here, the authors use an evolutionarily informed machine learning approach within and across species to predict genes affecting nitrogen utilization in crops, and show their approach is also useful in mammalian systems. |
format |
article |
author |
Chia-Yi Cheng Ying Li Kranthi Varala Jessica Bubert Ji Huang Grace J. Kim Justin Halim Jennifer Arp Hung-Jui S. Shih Grace Levinson Seo Hyun Park Ha Young Cho Stephen P. Moose Gloria M. Coruzzi |
author_facet |
Chia-Yi Cheng Ying Li Kranthi Varala Jessica Bubert Ji Huang Grace J. Kim Justin Halim Jennifer Arp Hung-Jui S. Shih Grace Levinson Seo Hyun Park Ha Young Cho Stephen P. Moose Gloria M. Coruzzi |
author_sort |
Chia-Yi Cheng |
title |
Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships |
title_short |
Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships |
title_full |
Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships |
title_fullStr |
Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships |
title_full_unstemmed |
Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships |
title_sort |
evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/df8c1a08be1a4c64bc07660726b1c1e2 |
work_keys_str_mv |
AT chiayicheng evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT yingli evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT kranthivarala evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT jessicabubert evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT jihuang evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT gracejkim evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT justinhalim evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT jenniferarp evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT hungjuisshih evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT gracelevinson evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT seohyunpark evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT hayoungcho evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT stephenpmoose evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships AT gloriamcoruzzi evolutionarilyinformedmachinelearningenhancesthepowerofpredictivegenetophenotyperelationships |
_version_ |
1718380819067699200 |