The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved.
Coordinated replication of eukaryotic genomes is intrinsically asymmetric, with continuous leading strand synthesis preceding discontinuous lagging strand synthesis. Here we provide two types of evidence indicating that, in fission yeast, these two biosynthetic tasks are performed by two different r...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dfb36560d8a845ea839967e4cf30f3e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dfb36560d8a845ea839967e4cf30f3e6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dfb36560d8a845ea839967e4cf30f3e62021-11-18T06:19:09ZThe major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved.1553-73901553-740410.1371/journal.pgen.1002407https://doaj.org/article/dfb36560d8a845ea839967e4cf30f3e62011-12-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22144917/?tool=EBIhttps://doaj.org/toc/1553-7390https://doaj.org/toc/1553-7404Coordinated replication of eukaryotic genomes is intrinsically asymmetric, with continuous leading strand synthesis preceding discontinuous lagging strand synthesis. Here we provide two types of evidence indicating that, in fission yeast, these two biosynthetic tasks are performed by two different replicases. First, in Schizosaccharomyces pombe strains encoding a polδ-L591M mutator allele, base substitutions in reporter genes placed in opposite orientations relative to a well-characterized replication origin are strand-specific and distributed in patterns implying that Polδ is primarily involved in lagging strand replication. Second, in strains encoding a polε-M630F allele and lacking the ability to repair rNMPs in DNA due to a defect in RNase H2, rNMPs are selectively observed in nascent leading strand DNA. The latter observation demonstrates that abundant rNMP incorporation during replication can be tolerated and that they are normally removed in an RNase H2-dependent manner. This provides strong physical evidence that Polε is the primary leading strand replicase. Collectively, these data and earlier results in budding yeast indicate that the major roles of Polδ and Polε at the eukaryotic replication fork are evolutionarily conserved.Izumi MiyabeThomas A KunkelAntony M CarrPublic Library of Science (PLoS)articleGeneticsQH426-470ENPLoS Genetics, Vol 7, Iss 12, p e1002407 (2011) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Genetics QH426-470 |
spellingShingle |
Genetics QH426-470 Izumi Miyabe Thomas A Kunkel Antony M Carr The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. |
description |
Coordinated replication of eukaryotic genomes is intrinsically asymmetric, with continuous leading strand synthesis preceding discontinuous lagging strand synthesis. Here we provide two types of evidence indicating that, in fission yeast, these two biosynthetic tasks are performed by two different replicases. First, in Schizosaccharomyces pombe strains encoding a polδ-L591M mutator allele, base substitutions in reporter genes placed in opposite orientations relative to a well-characterized replication origin are strand-specific and distributed in patterns implying that Polδ is primarily involved in lagging strand replication. Second, in strains encoding a polε-M630F allele and lacking the ability to repair rNMPs in DNA due to a defect in RNase H2, rNMPs are selectively observed in nascent leading strand DNA. The latter observation demonstrates that abundant rNMP incorporation during replication can be tolerated and that they are normally removed in an RNase H2-dependent manner. This provides strong physical evidence that Polε is the primary leading strand replicase. Collectively, these data and earlier results in budding yeast indicate that the major roles of Polδ and Polε at the eukaryotic replication fork are evolutionarily conserved. |
format |
article |
author |
Izumi Miyabe Thomas A Kunkel Antony M Carr |
author_facet |
Izumi Miyabe Thomas A Kunkel Antony M Carr |
author_sort |
Izumi Miyabe |
title |
The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. |
title_short |
The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. |
title_full |
The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. |
title_fullStr |
The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. |
title_full_unstemmed |
The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. |
title_sort |
major roles of dna polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2011 |
url |
https://doaj.org/article/dfb36560d8a845ea839967e4cf30f3e6 |
work_keys_str_mv |
AT izumimiyabe themajorrolesofdnapolymerasesepsilonanddeltaattheeukaryoticreplicationforkareevolutionarilyconserved AT thomasakunkel themajorrolesofdnapolymerasesepsilonanddeltaattheeukaryoticreplicationforkareevolutionarilyconserved AT antonymcarr themajorrolesofdnapolymerasesepsilonanddeltaattheeukaryoticreplicationforkareevolutionarilyconserved AT izumimiyabe majorrolesofdnapolymerasesepsilonanddeltaattheeukaryoticreplicationforkareevolutionarilyconserved AT thomasakunkel majorrolesofdnapolymerasesepsilonanddeltaattheeukaryoticreplicationforkareevolutionarilyconserved AT antonymcarr majorrolesofdnapolymerasesepsilonanddeltaattheeukaryoticreplicationforkareevolutionarilyconserved |
_version_ |
1718424511054872576 |