Predicting the frequencies of drug side effects
Currently, the frequencies of drug side effects are determined in randomised controlled clinical trials. Here the authors develop an interpretable machine learning approach to predict the frequencies of unknown side effects for drugs with a small number of determined side effect frequencies.
Enregistré dans:
Auteurs principaux: | Diego Galeano, Shantao Li, Mark Gerstein, Alberto Paccanaro |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e13f5df0401d4c95ac1e4ea0421f663b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Phenotypes associated with genes encoding drug targets are predictive of clinical trial side effects
par: Phuong A. Nguyen, et autres
Publié: (2019) -
Using sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood
par: Shantao Li, et autres
Publié: (2020) -
Network neighbors of drug targets contribute to drug side-effect similarity.
par: Lucas Brouwers, et autres
Publié: (2011) -
Brain activity patterns in high-throughput electrophysiology screen predict both drug efficacies and side effects
par: Peter M. Eimon, et autres
Publié: (2018) -
Author Correction: Phenotypes associated with genes encoding drug targets are predictive of clinical trial side effects
par: Phuong A. Nguyen, et autres
Publié: (2019)