Superior haplotypes towards development of low glycemic index rice with preferred grain and cooking quality

Abstract Increasing trends in the occurrence of diabetes underline the need to develop low glycemic index (GI) rice with preferred grain quality. In the current study, a diverse set of 3 K sub-panel of rice consisting of 150 accessions was evaluated for resistant starch and predicted glycemic index,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ramchander Selvaraj, Arun Kumar Singh, Vikas Kumar Singh, Ragavendran Abbai, Sonali Vijay Habde, Uma Maheshwar Singh, Arvind Kumar
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e19ebf46b8014bb8a841170019ffd2a8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Increasing trends in the occurrence of diabetes underline the need to develop low glycemic index (GI) rice with preferred grain quality. In the current study, a diverse set of 3 K sub-panel of rice consisting of 150 accessions was evaluated for resistant starch and predicted glycemic index, including nine other quality traits under transplanted situation. Significant variations were noticed among the accessions for the traits evaluated. Trait associations had shown that amylose content possess significant positive and negative association with resistant starch and predicted glycemic index. Genome-wide association studies with 500 K SNPs based on MLM model resulted in a total of 41 marker-trait associations (MTAs), which were further confirmed and validated with mrMLM multi-locus model. We have also determined the allelic effect of identified MTAs for 11 targeted traits and found favorable SNPs for 8 traits. A total of 11 genes were selected for haplo-pheno analysis to identify the superior haplotypes for the target traits where haplotypes ranges from 2 (Os10g0469000-GC) to 15 (Os06g18720-AC). Superior haplotypes for RS and PGI, the candidate gene Os06g11100 (H4-3.28% for high RS) and Os08g12590 (H13-62.52 as intermediate PGI). The identified superior donors possessing superior haplotype combinations may be utilized in Haplotype-based breeding to developing next-generation tailor-made high quality healthier rice varieties suiting consumer preference and market demand.