High Hole Mobility Polycrystalline GaSb Thin Films

In this paper, we report on the structural and electronic properties of polycrystalline gallium antimonide (poly-GaSb) films (50–250 nm) deposited on <i>p</i><sup>+</sup> Si/SiO<sub>2</sub> by metalorganic vapour phase epitaxy at 475 °C. GaSb films grown on semi-i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anya Curran, Farzan Gity, Agnieszka Gocalinska, Enrica Mura, Roger E. Nagle, Michael Schmidt, Brendan Sheehan, Emanuele Pelucchi, Colm O’Dwyer, Paul K. Hurley
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/e1a788fbc76d4c60a486dfc8daf77050
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we report on the structural and electronic properties of polycrystalline gallium antimonide (poly-GaSb) films (50–250 nm) deposited on <i>p</i><sup>+</sup> Si/SiO<sub>2</sub> by metalorganic vapour phase epitaxy at 475 °C. GaSb films grown on semi-insulating GaAs substrates are included as comparative samples. In all cases, the unintentionally doped GaSb is <i>p</i>-type, with a hole concentration in the range of 2 × 10<sup>16</sup> to 2 × 10<sup>17</sup> cm<sup>−3</sup>. Exceptional hole mobilities are measured for polycrystalline GaSb on SiO<sub>2</sub> in the range of 9–66 cm<sup>2</sup>/Vs, exceeding the reported values for many other semiconductors grown at low temperatures. A mobility of 9.1 cm<sup>2</sup>/Vs is recorded for an amorphous GaSb layer in a poly-GaAs/amorphous GaSb heterostructure. Mechanisms limiting the mobility in the GaSb thin films are investigated. It is found that for the GaSb grown directly on GaAs, the mobility is phonon-limited, while the GaSb deposited directly on SiO<sub>2</sub> has a Coulomb scattering limited mobility, and the poly-GaAs/amorphous GaSb heterostructure on SiO<sub>2</sub> displays a mobility which is consistent with variable-range-hopping. GaSb films grown at low temperatures demonstrate a far greater potential for implementation in <i>p</i>-channel devices than for implementation in ICs.