Prediction of pharmacological activities from chemical structures with graph convolutional neural networks

Abstract Many therapeutic drugs are compounds that can be represented by simple chemical structures, which contain important determinants of affinity at the site of action. Recently, graph convolutional neural network (GCN) models have exhibited excellent results in classifying the activity of such...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Miyuki Sakai, Kazuki Nagayasu, Norihiro Shibui, Chihiro Andoh, Kaito Takayama, Hisashi Shirakawa, Shuji Kaneko
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/e24b906189ad43caa5818c58ca25debc
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!