Prediction of pharmacological activities from chemical structures with graph convolutional neural networks

Abstract Many therapeutic drugs are compounds that can be represented by simple chemical structures, which contain important determinants of affinity at the site of action. Recently, graph convolutional neural network (GCN) models have exhibited excellent results in classifying the activity of such...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Miyuki Sakai, Kazuki Nagayasu, Norihiro Shibui, Chihiro Andoh, Kaito Takayama, Hisashi Shirakawa, Shuji Kaneko
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e24b906189ad43caa5818c58ca25debc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares