Prediction of pharmacological activities from chemical structures with graph convolutional neural networks
Abstract Many therapeutic drugs are compounds that can be represented by simple chemical structures, which contain important determinants of affinity at the site of action. Recently, graph convolutional neural network (GCN) models have exhibited excellent results in classifying the activity of such...
Guardado en:
Autores principales: | Miyuki Sakai, Kazuki Nagayasu, Norihiro Shibui, Chihiro Andoh, Kaito Takayama, Hisashi Shirakawa, Shuji Kaneko |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e24b906189ad43caa5818c58ca25debc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Jiarui Chen, et al.
Publicado: (2021) -
Synthetic aperture radar image change detection based on convolutional‐curvelet neural network and partial graph‐cut
por: Meng Jia, et al.
Publicado: (2021) -
Structure-based protein function prediction using graph convolutional networks
por: Vladimir Gligorijević, et al.
Publicado: (2021) -
Sentence Compression Using BERT and Graph Convolutional Networks
por: Yo-Han Park, et al.
Publicado: (2021) -
Drug Therapeutic-Use Class Prediction and Repurposing Using Graph Convolutional Networks
por: Mapopa Chipofya, et al.
Publicado: (2021)