Faster Post-Earthquake Damage Assessment Based on 1D Convolutional Neural Networks

Contemporary deep learning approaches for post-earthquake damage assessments based on 2D convolutional neural networks (CNNs) require encoding of ground motion records to transform their inherent 1D time series to 2D images, thus requiring high computing time and resources. This study develops a 1D...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Xinzhe Yuan, Dustin Tanksley, Liujun Li, Haibin Zhang, Genda Chen, Donald Wunsch
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
T
Accès en ligne:https://doaj.org/article/e2ae3fa7137a4d019489ac7204158710
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!