Faster Post-Earthquake Damage Assessment Based on 1D Convolutional Neural Networks

Contemporary deep learning approaches for post-earthquake damage assessments based on 2D convolutional neural networks (CNNs) require encoding of ground motion records to transform their inherent 1D time series to 2D images, thus requiring high computing time and resources. This study develops a 1D...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xinzhe Yuan, Dustin Tanksley, Liujun Li, Haibin Zhang, Genda Chen, Donald Wunsch
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/e2ae3fa7137a4d019489ac7204158710
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!