Active Learning in Bayesian Neural Networks for Bandgap Predictions of Novel Van der Waals Heterostructures

The bandgap is one of the most fundamental properties of condensed matter. However, an accurate calculation of its value, which could potentially allow experimentalists to identify materials suitable for device applications, is very computationally expensive. Here, active machine learning algorithms...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Marco Fronzi, Olexandr Isayev, David A. Winkler, Joseph G. Shapter, Amanda V. Ellis, Peter C. Sherrell, Nick A. Shepelin, Alexander Corletto, Michael J. Ford
Format: article
Langue:EN
Publié: Wiley 2021
Sujets:
Accès en ligne:https://doaj.org/article/e41b429baf3547a4b1f34b7a6c481518
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!