Separability and geometry of object manifolds in deep neural networks
Neural activity space or manifold that represents object information changes across the layers of a deep neural network. Here the authors present a theoretical account of the relationship between the geometry of the manifolds and the classification capacity of the neural networks.
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e4533fa30cfe48ebace100730076100b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|