Separability and geometry of object manifolds in deep neural networks

Neural activity space or manifold that represents object information changes across the layers of a deep neural network. Here the authors present a theoretical account of the relationship between the geometry of the manifolds and the classification capacity of the neural networks.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Uri Cohen, SueYeon Chung, Daniel D. Lee, Haim Sompolinsky
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/e4533fa30cfe48ebace100730076100b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!