Separability and geometry of object manifolds in deep neural networks

Neural activity space or manifold that represents object information changes across the layers of a deep neural network. Here the authors present a theoretical account of the relationship between the geometry of the manifolds and the classification capacity of the neural networks.

Guardado en:
Detalles Bibliográficos
Autores principales: Uri Cohen, SueYeon Chung, Daniel D. Lee, Haim Sompolinsky
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/e4533fa30cfe48ebace100730076100b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Neural activity space or manifold that represents object information changes across the layers of a deep neural network. Here the authors present a theoretical account of the relationship between the geometry of the manifolds and the classification capacity of the neural networks.