Separability and geometry of object manifolds in deep neural networks

Neural activity space or manifold that represents object information changes across the layers of a deep neural network. Here the authors present a theoretical account of the relationship between the geometry of the manifolds and the classification capacity of the neural networks.

Guardado en:
Detalles Bibliográficos
Autores principales: Uri Cohen, SueYeon Chung, Daniel D. Lee, Haim Sompolinsky
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/e4533fa30cfe48ebace100730076100b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e4533fa30cfe48ebace100730076100b
record_format dspace
spelling oai:doaj.org-article:e4533fa30cfe48ebace100730076100b2021-12-02T16:56:34ZSeparability and geometry of object manifolds in deep neural networks10.1038/s41467-020-14578-52041-1723https://doaj.org/article/e4533fa30cfe48ebace100730076100b2020-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-14578-5https://doaj.org/toc/2041-1723Neural activity space or manifold that represents object information changes across the layers of a deep neural network. Here the authors present a theoretical account of the relationship between the geometry of the manifolds and the classification capacity of the neural networks.Uri CohenSueYeon ChungDaniel D. LeeHaim SompolinskyNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Uri Cohen
SueYeon Chung
Daniel D. Lee
Haim Sompolinsky
Separability and geometry of object manifolds in deep neural networks
description Neural activity space or manifold that represents object information changes across the layers of a deep neural network. Here the authors present a theoretical account of the relationship between the geometry of the manifolds and the classification capacity of the neural networks.
format article
author Uri Cohen
SueYeon Chung
Daniel D. Lee
Haim Sompolinsky
author_facet Uri Cohen
SueYeon Chung
Daniel D. Lee
Haim Sompolinsky
author_sort Uri Cohen
title Separability and geometry of object manifolds in deep neural networks
title_short Separability and geometry of object manifolds in deep neural networks
title_full Separability and geometry of object manifolds in deep neural networks
title_fullStr Separability and geometry of object manifolds in deep neural networks
title_full_unstemmed Separability and geometry of object manifolds in deep neural networks
title_sort separability and geometry of object manifolds in deep neural networks
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/e4533fa30cfe48ebace100730076100b
work_keys_str_mv AT uricohen separabilityandgeometryofobjectmanifoldsindeepneuralnetworks
AT sueyeonchung separabilityandgeometryofobjectmanifoldsindeepneuralnetworks
AT danieldlee separabilityandgeometryofobjectmanifoldsindeepneuralnetworks
AT haimsompolinsky separabilityandgeometryofobjectmanifoldsindeepneuralnetworks
_version_ 1718382831738028032