Separability and geometry of object manifolds in deep neural networks
Neural activity space or manifold that represents object information changes across the layers of a deep neural network. Here the authors present a theoretical account of the relationship between the geometry of the manifolds and the classification capacity of the neural networks.
Guardado en:
Autores principales: | Uri Cohen, SueYeon Chung, Daniel D. Lee, Haim Sompolinsky |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e4533fa30cfe48ebace100730076100b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization
por: Qianyi Li, et al.
Publicado: (2021) -
Lightlike Geometry of Leaves in Indefinite Kenmotsu Manifolds
por: Massamba,Fortuné
Publicado: (2011) -
Robust feature space separation for deep convolutional neural network training
por: Ali Sekmen, et al.
Publicado: (2021) -
Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model
por: Sebastian Goldt, et al.
Publicado: (2020) -
Meta-neural-network for real-time and passive deep-learning-based object recognition
por: Jingkai Weng, et al.
Publicado: (2020)