Separability and geometry of object manifolds in deep neural networks
Neural activity space or manifold that represents object information changes across the layers of a deep neural network. Here the authors present a theoretical account of the relationship between the geometry of the manifolds and the classification capacity of the neural networks.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e4533fa30cfe48ebace100730076100b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!