Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types

Single cell profiling yields high dimensional data of very large numbers of cells, posing challenges of visualization and analysis. Here the authors introduce a method for analysis of mass cytometry data that can handle very large datasets and allows their intuitive and hierarchical exploration.

Guardado en:
Detalles Bibliográficos
Autores principales: Vincent van Unen, Thomas Höllt, Nicola Pezzotti, Na Li, Marcel J. T. Reinders, Elmar Eisemann, Frits Koning, Anna Vilanova, Boudewijn P. F. Lelieveldt
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/e50b0012ac854b22b12f11d3326c67c4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!