Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types
Single cell profiling yields high dimensional data of very large numbers of cells, posing challenges of visualization and analysis. Here the authors introduce a method for analysis of mass cytometry data that can handle very large datasets and allows their intuitive and hierarchical exploration.
Enregistré dans:
Auteurs principaux: | Vincent van Unen, Thomas Höllt, Nicola Pezzotti, Na Li, Marcel J. T. Reinders, Elmar Eisemann, Frits Koning, Anna Vilanova, Boudewijn P. F. Lelieveldt |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e50b0012ac854b22b12f11d3326c67c4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.
par: Andrew Cron, et autres
Publié: (2013) -
Hierarchical progressive learning of cell identities in single-cell data
par: Lieke Michielsen, et autres
Publié: (2021) -
Hierarchical information clustering by means of topologically embedded graphs.
par: Won-Min Song, et autres
Publié: (2012) -
The Power of Universal Contextualized Protein Embeddings in Cross-species Protein Function Prediction
par: Irene van den Bent, et autres
Publié: (2021) -
treekoR: identifying cellular-to-phenotype associations by elucidating hierarchical relationships in high-dimensional cytometry data
par: Adam Chan, et autres
Publié: (2021)