Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types
Single cell profiling yields high dimensional data of very large numbers of cells, posing challenges of visualization and analysis. Here the authors introduce a method for analysis of mass cytometry data that can handle very large datasets and allows their intuitive and hierarchical exploration.
Guardado en:
Autores principales: | Vincent van Unen, Thomas Höllt, Nicola Pezzotti, Na Li, Marcel J. T. Reinders, Elmar Eisemann, Frits Koning, Anna Vilanova, Boudewijn P. F. Lelieveldt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e50b0012ac854b22b12f11d3326c67c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples.
por: Andrew Cron, et al.
Publicado: (2013) -
Hierarchical progressive learning of cell identities in single-cell data
por: Lieke Michielsen, et al.
Publicado: (2021) -
Hierarchical information clustering by means of topologically embedded graphs.
por: Won-Min Song, et al.
Publicado: (2012) -
The Power of Universal Contextualized Protein Embeddings in Cross-species Protein Function Prediction
por: Irene van den Bent, et al.
Publicado: (2021) -
treekoR: identifying cellular-to-phenotype associations by elucidating hierarchical relationships in high-dimensional cytometry data
por: Adam Chan, et al.
Publicado: (2021)