Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types

Single cell profiling yields high dimensional data of very large numbers of cells, posing challenges of visualization and analysis. Here the authors introduce a method for analysis of mass cytometry data that can handle very large datasets and allows their intuitive and hierarchical exploration.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Vincent van Unen, Thomas Höllt, Nicola Pezzotti, Na Li, Marcel J. T. Reinders, Elmar Eisemann, Frits Koning, Anna Vilanova, Boudewijn P. F. Lelieveldt
Format: article
Langue:EN
Publié: Nature Portfolio 2017
Sujets:
Q
Accès en ligne:https://doaj.org/article/e50b0012ac854b22b12f11d3326c67c4
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!